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Abstract

Normal and axial force indicial responses for a 2-D NACA 0015 airfoil undergoing small step

changes in angle of attack have been measured in a tow tank. The airfoil was pitched about the

quarter chord and the Reynolds number was 9.5 X 104. "First order" and "second order" tests

were conducted. In the first order tests, the angle of attack prior to the step onset was held

constant. In the second order study, the airfoil and was ramped up at constant rate to the onset

angle. Step onset angles in the range 0' < a < 60' were considered. The step responses have

been integrated numerically to compute the loading during a ramp-up motion. The integrated

results are compared with baseline load data taken with the same airfoil.
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1. Introduction

The loading on an airfoil operating at high angle of attack is a nonlinear flight problem. In

this context, nonlinear refers to the fact that the loading response to a step change in one or more

of the motion variables is influenced by the flow conditions which exist at the onset of the step.

The flow conditions at the step onset will be determined by the airfoil motion history prior to the

step. Mathematically, the loading response to a step change in a motion variable as the step

amplitude approaches zero and wherein an accounting is made of past motion effects is called the

nonlinear indicial response[ 1.2]. The loading on an airfoil in arbitrary motion can, in principle, be

computed through a convolution of indicial responses. This report investigates experimentally the

nonlinear indicial normal and axial force responses to step changes in angle of attack. The main

objectives of this report are to: i) provide some theoretical justification for the experiments

undertaken, ii)present experimentally measured normal and axial force responses to step changes

in angle of attack, and iii)numerically integrate the experimental responses for certain trial

motions. The normal and axial forces acting on a 2-D airfoil undergoing a large-amplitude ramp

motion are computed from the experimentally measured nonlinear responses. A saw-tooth motion

is also considered. The integrated results are compared with baseline data taken with the same

airfoil.

II. The Nonlinear Indicial Response

The normal force loading on a two dimensional airfoil moving in translation and rotation

can be computed from the following convolution integral[ 1]:I ft
CN(t) = CNo + J Na [ dfi + d_ IdT + (Na d dT

dr dT J dT

where 'No is the initial force, t is the nondimensional "measuring" time, and T is a

nondimensional time variable of integration. The motion variables a and i are measured in the

"wind tunnel" axes so that a is the angle between the freestream velocity vector and the airfoil

chord line and is positive nose-up, and hi is the nondimensional rate of plunge perpendicular to the

freestream and is positive downward. Both a and fi are measured at the pitch axis. The term a

is the rate of change of a by rotation about the pitch axis. The terms (Na and (tNaj are the
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normal force indicial responses which are defined as:

N= aCN)

4a h,* = const a a,& = const

(2)

and 4 Na= OCN)
a- a,F = const

In the nonlinear aerodynamics formulation the indicial responses are functionals[ 1,21 of the airfoil

motion. Following the notation of Reference[ 11, this can be expressed by:

(tNa = ( Na [a(t);t,T] and Na = 4 Na [a(t);tT] (3)

where a(t) is a function which describes the airfoil motion. Notice that in the form of Equation

1, the indicial response 4 N& may also depend on the location of the pitch axis. By writing the

indicial responses as functionals in terms of the airfoil motion a(t), past motion effects on the

flow field are introduced into the formulation. In the linear formulation, the indicial responses are

independent of prior motion events.

As shown in Section 111.1, the integrals in Equation 1 can be written in terms of a single
nonlinear indicial response functional, 4DNa (r

CN(t) = CNo + J tNa dO( dr (4)

wNr In Sction 111.2, dNa is shown to be related to the loading
where ( Na =  Na -dT N

response to a step change in a due to instantaneous rotation about some pitch axis.

The indicial response, 4tNa , is a derivative which is defined in terms of a "reference"

motion and a "step" motion as illustrated in Figure I t 1]. The nonlinear indicial response is

given by:

= lim CN2(t) - CNI(t)
Aa 

(5)
Aa -*0
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a2

cx((

T t

C

/

T t

where:

a(&) is the "reference motion," defined for -00 < t < T;

I consists of a(x), for t < r, and is held constant at a(T)
for t > T;

a2 consists of a( ), for t < T, but jumps instantaneosly to
a(T) +Aa, for t > r.

Figure 1. Motions for Defining the Nonlinear Indicial Response 111.
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The form of the indicial response in Equation 5 is not tractable due to the potentially infinite

number of reference motions and simplification of the response is needed. Reference 11

suggests that for relatively slow motions the response may be expressed in terms of elapsed time

from step onset, t-r, and a finite number of motion variables at step onset. This can be written:

4 )Not(cx(0);t,r] (t)Nat[t-r; a(T),O(T),o(r),...) (6)

where the retention of successively higher order derivatives includes motion events further into the

past. The main focus of the present work is the dependence of the indicial response on the first

order term, a (r), in Equation 6. Second order dependence would include both the aCr) and

a r) terms, and so on.

11. 1 Incompressible Case

The present experimental tests were conducted in water at a translational speed of 2 ft/s.

Under these conditions the Mach number is nearly zero. In References[3,41 the indicial response
is separated into a circulatory component, 4 Nac and a noncirculatrory component, (t 1:

Na[t-T , a(T)] = (tNac[t-r a (T)] + (DNa i[t-r, a(r)] (7)

where we now specify 4)NQ to be a first order response (i.e. a function of cX(T)). For a thin 2-D

airfoil at low angle of attack in an incompressible fluid (and with zero plunge), the noncirculatory

normal force response due to an instantaneous positive step change in angle of attack by rotation

about the quarter chord isl51:

(4 Na1[tt-, a(r)] = 7T [ 6(t-T) + 1 (t-T) 1 (8)
2

The first term on the RHS is the Dirac delta function due to the infinite pitch rate at the step onset,

ard the second term is the time derivative of the delta function and represents the infinite angular

acceleration and deceleration at the beginning and end of the rotation, respectively. The

noncirculatory response for incompressible flow is nonzero at the step onset only and Equation 7
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can be rewrittcn.
(t.Clt-Tr ,a(T) I = (tN.xC It-T .0a(T)], t-T > 0 (9)

So that for incompressible flow. there is essentially an uncoupling of the circulatory and

noncirculatory effects. Notice, however, that the noncirculatory component will contribute to the

integral of Equation 4 due to integration across the delta function at T = t. giving an apparent mass

term proportional to a.(t) 161.

111. Justification of the Approach

I11.1 Alternate Form of the Convolution Integral

To first order, and with zero plunge. the normal force acting on an airfoil is given by the

convolution integral:

t (t
do.dr * 4NatIt-.x(T)I dcx dr (0

CN(t) = CNo + (DNaIt-T. U(r)l dr dr (10)

where t and T are measured in semichords. In what follows an alternate form of Equation 10 is
derived. This new form combines the indicial response due to angle of attack (4 \a) and the
indicial response due to pitch rate (4\,j) into a single response. 4DNa* for a step change in 0 due

to instantaneous rotation about the pitch axis.
A prescribed airfoil motion can be represented by:

0X(T) = 0, + .(T) f(T) (11)

where 0 , is the initial angle of attack. P(r) is the unit step function which is zero for r < 0 and is

unity for r > 0, and f(r) is a nondimensional function describing the motion. The use of the unit
step function allows consideration of both continuous and discontinuous motions such as:

f(r)= KT (instantaneously started ramp motion, K-:-const.)
f(T)= A sin .oTr (harmonic motion)

f(T) = Aa (instantaneous step change in a)

Notice that for motions which are continuous in a at the origin f(0) = 0. In order to evaluate the
integrals in Equation 10 we need:
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dot = p(T) f(T) + (r) f(T) and dcr = p(T) f(r) + 26(r) f'(T) + 8 (T) f(T) (12)
dr dT

where 5(T) is the delta function, and the ' superscript denotes differentiation with respect to r.

Substituting Equations 12 into Equation 10 and performing the integrations where possible171

yields:
ft ft

CN(t) = CNo + ) Na f' (r) dr + 4 Na f"(r) dr +

(13)

[ (Ncx I f(T) I--0 +  N f'(r) 0"=--0

where the notation has been shortened using: Na = NaXlt-T, o(T)I and 4 )N& = N* [t-'.L(T)I
and " N -d4: The second integral on the RHS of Equation 13 can be

a dT d(t-T)

integrated by parts to give:

r ft

cN f"(r) drT Na f(r) I t - NO( f(r) r-0 - f (t NOf(r) dT (14)

Substituting Equation 14 into 13 and combining the integrals yields:

CN(t) = CNo + J [ (N -()NQ] e (T)dr +

(15)

[Nc( - (No I f(T) =0 + Nc(x f(T)r

The integral on the RHS gives the "running" circulatory lift. The third term on the RHS provides
for circulatory lift for motions which are discontinuous in a at the origin (i.e. f(0) ;1 0). The last
term on the RHS is a rate effect at the measuring time. t, and is a consequence of the integration
by parts. This term provides for circulatory lift due to pitching at t = 0 for motions which are
discontinuous in rate (i.e. f(0) * 0) such as an instantaneous ramp.

Now, it is proposed to wTite the convolution integral in an alternate form given by:

CN(t) = CNo + 4 (N[t-rQ(T)I dc dr 16
fdr (16)
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where (4 Na is a first order response. Substituting the first of Equations 12 into 16 yields:

CN(t) = CNo + J tXa ' (T) dr + 4 f) ) T=--0 (17)

Comparing Equation 17 with Equation 15 it Lan be seen that each formulation will give the same

result if N is defined as:

I Noc[t-T,0. (T)] = 4)N Utr. (T) - 4. ) NX[t-T,a (r) (18)

and Equation 16 is amended to read:

CN(t) = CNo + Ojt-Ta()] d dT + (yN*[t-r.a(r)l f'(r) (19)

I The convolution integral is thus written in terms of a single response functional, l-,Ich is

defined by Equation 18 and f r) depends on the motion as defined by Equation 11. AithoughIthe analysis has been done using first order responses, the result is valid for higher order as well
as the full nonlinear form.

I 111.2 The Indicial Response due to Rotation

The response N can be shown to be the response to an instantaneous step change in

I angle of attack due to rotation. For this motion, in Equation 11. f(r) = f(0) = Acx and f(r) =

f(O) = 0, so that Equation 15 yields:

AC-N-( )- =4Natt-0Na(O)] - 4 )NxIt-Ola(O)I (20)

where ACN(t) = CN(t) - CNo . Taking the limit as Aa approaches zero in accordance with

Equation 5 results in:

eCN(t)
- rotation = )NaIt-0.(0)] - 4 N61t-0,a(0)I (21)

Setting T = 0 in Equation 18 and comparing the result with Equation 21 shows that, by definition,

the indicial response 4 ) Na is equal to the circulatory response to a step change in angle of attack
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due to rotation. The same result is derived somewhat more formally in Appendix A. The
response to rotation contains both an angle effect given by the first term on the RHS of Equation
21 and a rate effect given by the second term on the RHS. This result, in combination with the
formulation for the loading given by Equation 19, forms the basis of the present experimental

study wherein (x has been measured approximately. We use the term approximately because

the indicial response is defined for an instantaneous step change in a which, of course, is not
possible in the laboratory. However, by using water as the working fluid, very rapid step
changes relative to the freestream velocity are possible at reasonable Reynolds numbers. Also, it

is easier experimentally to impart the motions required to produce the response Nc, than the
somewhat more complicated motions to produce (4,il 1 I.

The last term on the RHS of Equation 19 is the product of the indicial response due to a

step change in pitch rate (see Equation 2) and the first derivative of the motion function f(r)

evaluated at time, T=t. Within the scope of the present study, evaluating this term presents a

problem since it is generally not possible to separate the experimental results for 4DNa into the
4 .a and (4xT,, components. Notice, however, that experimentally 4t>,Tt-r.a(r)I (or any other

experimentally measured response for that matter) will be identically zero at r=t (i.e. t-r = 0) due

to the cancellation of the reference motion and the step change in a motion needed to construct the
indicial response. In other words, it is not possible to measure an instantaneous change in
circulatory loading. Since our purpose here is to consider integration of experimentally measured
indicial responses, this term has been neglected in the force calculations which follow. An
estimate of the theoretical magnitude of this term is possible, however, using Wagner's function
given by the first of Equations 24 below. For r=-t the expression gives (4 Na(0) = (tN(0) = 7r.

Whereas the magnitude of f(t) will generally be less than 0.05, the product gives

(I)Na(0) f(t) < 0.16.

111.3 Effect of Step Rate on the Theoretical Response
Obviously, the present experimental approach raises the question: Is a rapid step sufficient

to produce a response similar to the indicial response defined for instantaneous motions? We can
investigate this possibility using the classical response to a step change in plunge rate given by
Wagner's function. Recall from Equation 2 that this is also the response to a step change in a

with a held constant. For a thin 2-D airfoil undergoing small amplitude motion in an inviscid,
incompressible fluid[5]: 4 ,rqx = N, = 4 N, where 4N is Wagner's function. The Wagner

function is linear and depends on elapsed time only so that (tN = 4(,N(t- T). From Equation 15
with CNO = 0, the circulatory loading due to an instantaneous step change in a by rotation is:

CN(t) = Aa [N(t-r) - N(t-T)l I-O (22)
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where the step occurs at T = 0 and t is measured from the step onset. Wagner's function can be
approximated by an exponential function of the form:

4 N(T) = 27r [P(T) - A e-aT - B e-bT] (23)

so that:

(tN(t-T) = 2rr [p(t-r) - A e-a(t-T) - B e-b(t-T)]

(24)

4)N(t-T) = -2- [5(t-T) + Aae-a(t-T) + Bbe-b(t-T)]

also, substituting Equations 24 into 18 yields:

(tNa[t-T,a(T)I = 2n [1 - (1-a)A e-a(t-T) - (1-b)B e-b(t-T)] , for t > 0 (25)

which is the classical linear indicial response due to a step change in alpha by rotation. Notice
that while this is based on Wagner's function, it differs from Wagner's function due to the rate
effect given by the second of Equations 24. Substituting Equations 24 into 22 yields the
ideal(i.e. for instantaneous motion) normal force response:

CNid,,l(t) = 2rr Aoa [ 1 - (I-a)A e-at - (I-b)B e-bt] , for t > 0 (26)

The constants are given by[5j: A--0.165, B--0.335, a--0.0455, and b--0.3.
Of course, real motions are not instantaneous. In practice, however, we can simulate a

step change in angle of attack using a small amplitude pitching motion which, using Equation 11,
can be approximated by:

f(T) = KT 1 - P(T-Ts)] + A (XP(T-Ts) (27)

where K is the nondimensional pitch rate (K = ob b=semichord length, U=reference velocity)
U,0

and is a constant, T = 0 is when the pitch begins, r = Ts is when the pitch ends, and Aa is the

amplitude. Taking the first derivative of Equation 27 and using A a = KTs yields:

f ((T) = KllI - u(T- "rs)] (28)

Substituting Equations 27 and 28 into Equation 15 and performing the integration results in the
following expression for the experimental normal force response:
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CNexp(t) = 27r Aa 11 - (1-a)Aea at _ b)e-bt , for t > Ts

exp (~a)Ae -a - (l-b)B( - r (29)aT. bT,

In our experiment we achieve a pitch rate of K = 0.5 and Aa = 1 which gives a step duration of
Ts = 0.035 semichords (- 0.005 sec in real time). An error which is defined as the difference
between the ideal response of Equation 26 and the experimental response of Equation 29, quantity
divided by the ideal response is plotted in Figure 2. The point to be made is that the simulation
motion of Equation 29 yields a circulatory lift response which is theoretically very close to that for
the instantaneous motion of Equation 26.

In summary, the convolution integral for the airfoil loading can be expressed in terms of an
indicial response for a step change in a due to rotation. For a rapid step at low angle of attack,
the circulatory response is theoretically very similar to the response to an instantaneous step.

IV. Experimental Set-Up
Experiments were conducted in the Ohio University tow-tank. The tank has a length of 30

ft, a width of 12 ft, and a depth of 4 ft. The use of water as a working fluid has several
advantages in the types of experiments which were conducted. These include: larger dynamic
pressures, very high nondimensional pitch rates are possible at manageable actual pitch rates,
and an uncoupling of the circulatory and noncirculatory effects due to incompressibility.

Tests were conducted on a six inch chord NACA 0015 airfoil. The airfoil is suspended
vertically from the carriage as shown in Figure 3a. The carriage moves in translation on precision
roller bearings and shafts fixed to I-beams which span the tank. The translational speed was 2.03
ft/s which gives a Reynolds number of 9.4 X10 4 . The airfoil is driven in rotation about the
quarter chord by a high power stepper motor. The stepper motor has the rapid starting and
stopping capability needed to impart rapid small amplitude changes in angle of attack. The airfoil
is connected to the stepper motor via a drive shaft and a 10 to I speed reducer. The clearance
between the free end of the airfoil and the floor of the tank is one inch.

The normal and axial forces acting on the airfoil are measured using strain gauges mounted
on a load cell of rectangular cross section machined on the airfoil drive shaft as illustrated in
Figure 3b. The axis of the load cell passes through the quarter chord of the airfoil. The strain
gauges are arranged in two Wheatstone bridge configurations. Each bridge is sensitive to the
desired force only. The bridges also compensate for torsion. The bridges were calibrated by
applying point (quarter chord) loads at the midspan of the submerged part of the airfoil. The
bridge output voltages are amplified 200 times using amplifiers located on the carriage. The
amplified signals are transmitted via shielded cables to a data acquisition system beside the tank.
The system consists of an IBM p.c. equipped with a high-speed A/D converter and scanner. The
scanner has a maximum rate of 5 kHz per channel.

Due to the rapid starting and stopping of the airfoil during a step, structural vibrations
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Figure 2. Difference Between the Response due to an Instantaneous Step and the
Response due to Step at Finite Rate.
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introduced some noise into the bridge outputs. The noise appears at the natural frequencies of the

towing structure. The natural vibrational frequencies in the normal and axial force directions were

determined by draining the tank and running the airfoil across the tank at various angles of attack.

These "empty tank" data where transformed into the frequency domain using FFT where the

natural frequencies could be determined from the magnitudes of the Fourier coefficients.

To remove the noise, the strain gauge output signals were low-pass filtered to remove all

frequencies above 170 Hz. The data acquisition rate was then set at 340 Hz to ensure detection of

any remaining frequencies. The vibrational frequencies were removed from the actual

aerodynamic test data in post processing using digital notch filters set at the natural frequencies.
The frequencies which were filtered are shown in Table 1. The filters introduce a time lag which
has been corrected for in subsequent integrations as described in section IX. 1. The time lag is

approximately 0.5 chords. The time lag was estimated by assuming that as the step occurs the rise

in the force signals would occur at nearly the same frequency as the rise in the signal from the

angle of attack sensor. The angle of attack data were passed through the notch filters and the time
lag was estimated by comparing the filtered output with the unfiltered input.

V. Calculation of the Indicial Response
The first order normal force indicial response due to angle of attack has been measured by

considering the three motions shown in Figure 4. In each motion, the airfoil moves for several

chord lengths at constant angle of attack so that in the notation of Figure 1 we have a (t) =

a (T) = a0o . In motion 0, the angle is held constant to provide a measure of the static normal

force at ao. An average value of the static force was used by averaging the load data from the

twentieth to the twenty fifth chord of travel. In motion 1, the airfoil undergoes a rapid change in

angle of attack to ao+Aa u . and in motion 2 to ao-Aad. The angle of attack parameters ao ,

Aau, and Aad are measured quantities. The distinction between Aaxu and Aad is necessary

because the test apparatus is not capable of imparting perfectly symmetric steps about ao. The

time dependent normal force indicial response corresponding to the initial angle ao was computed

using a three point formula given by:

Najt-r, ao] = CNo[(Aau-Aad)(AauAOctj -1] +

CN+ [Aad(Aau(Aau+Aad)) - '] - CNJAau(Aad(Aau+AOd))l'1 (30)

where

CNo=CNo(aXo) = average steady state normal force coefficient during motion 0

CN+--CN+[t-'r,aol = transient normal force coefficient during motion 1
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Table 1. Filtered Frequencies in Hz

-----------------------------------------------------------..-----

Normal Force Axial Force

2.62 2.62

5.46 5.46

7.35 7.35

10.45 10.45

13.93 13.93

46.4 77.4

134.0

151.7



16

motionl

Aa
u

S0 O motion 0

motion 2

second order ramp

TIME

Figure 4. Test Motions for First and Second order Indicial Responses.
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CN_=CN_[t-r,cXo = transient normal force coefficient during motion 2

The same approach has been used for the axial force indicial response. For symmetric steps

Equation 30 reduces to a two point central difference. Notice that for zero time from step onset,

the measured indicial responses will be zero since an experimental simulation cannot produce an

instantaneous change in circulatory loading. As such, the loading for motions 1 and 2 will cancel

identically at zero elapsed time. Table 2 is a list of onset angles of attack (aXo) for which the

normal and axial force responses were measured.

The uncertainty in the normal force response given by Equation 30 has been estimated to be

±20%. The large uncertainty is primarily due to the uncertainty in Aa u and AaXd. and the fact

that the magnitudes of these terms themselves are small. Also contributing to the uncertainty is the

practice of subtracting two relatively large quantities, namely CN+ and CN_, to extract a small

residual therefrom. Each response was measured five times to check repeatability and the results

were ensemble averaged.
In an attempt to assess the second order rate effects (i gQ = 4NQ[t-T,.(T),a(r) ] ) for ramp

motions, a second series of tests were conducted in which the airfoil undergoes a ramp up motion

from a low(substall) angle of attack to the step onset angle of attack as shown in Figure 4. For

these tests only a step up and a step down runs were performed and the experimental indicial

response was computed using a two point central difference ( (CN+- CN_) / (AQxu+Aad) ).

Three pitch rates were consideredK = ab/U = 0.02, 0.05, and 0.1, and the step onset angles

were very similar to those shown in Table 2.

VI. Angle of Attack and Static Load Data

Representative angle of attack data for a first order response near a o = 80 are shown in

Figure 5a. The steps up and down occur at a reduced pitch rate (ab/U) of approximately 0.5.

In actual physical terms this corresponds to 230 deg/s. For the same airfoil chord length, reduced

pitch rate, and Reynolds number the corresponding actual pitch rate in a wind tunnel would be on

the order of 3500 deg/s. Figure 5b shows the step up and step down airfoil motion data for a

second order ramp-up test with a step onset angle near 210. The angle of attack data show some

electrical noise effects which appear as small spikes. This noise is of no consequence in the

calculation of the indicial response since in Equation 30 the Aa terms are constants found by first

filtering out the high frequency noise and then averaging the angle of attack data over several
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Table 2. First Order Onset Angles

U= 1.09. 2 5.65

4.8* 3 1.0 1'

8.33* 35.770

11.32' 40.240

14.50' 45.570

15.470 51.56'

17.550 56.160

20.77' 61.460
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Figure 5a. Angle of Attack Data for First Order Step Up and Step Down Motions at an Onset

Angle Near 8.
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Figure 5b. Angle of Attack Data for Second Order Step Up and Step Down Motions at an

Onset Angle Near 21'.
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chords before and after the step. The broken lines indicate the average values.

For large values of elapsed time from step onset, the indicial response given by Equation

30 should approach the static force curve slope. The static normal and axial forces have been

measured from 0' to 60 * in 1 to 20 increments and the results are shown in Figures 6a and 6b.

respectively. The static slope has been computed from these data using curve fitting over

subintervals of alpha and the results are shown in Figures 7a and 7b. These slope data will be

compared with the experimental indicial responses at large values of elapsed time.

As a point of reference, the normal force curve slope for a potential flow is also shown on

Figure 7a. The potential flow solution obtained using complex variables is[ 81:

eCN]eCN )SS = 2r(1 + 0.77t/c)

(= 7.0 for a NACA 0015) (31)

where t/c is the airfoil thickness ratio. Of course, Equation 31 is only valid for inviscid flow at

small angles of attack. The slope data of Figure 7a show nonlinear behavior even at low angles

of attack where linear behavior is usually assumed. Surprisingly, there are not many other

sources of static section force data at the present Reynolds number (-105) for comparison. Lift

curves from wind tunnel tests on a NACA 0015 are given in Referencel9l for several Reynolds

numbers and these data are also plotted on Figure 6a. These data date back to 1937 and are the

result of integrated pressure distributions measured using fluid manometers. These data are in

graphical form and are rather difficult to quantify accurately--particularly for slopj . At a

Reynolds number of 84.000 these data appear to show linear behavior in the range 0 < a1 < 6*

with a slope of approximately 5.9/rad. Notice that this is in rather poor agreement with the

theoretical value of 7.0/rad from Equation 31. The difference may be due to viscous losses and

wake effects. On the other hand, the data of Reference 191 for a Reynolds number of 42.900

have a nonlinear slope over the same angle of attack range. The slope from in the range of 0 X

< 2" is on the order of 9.0/rad, while for the range 4" < a < 60 the slope is near 4.2/rad.

Possibly. boundary layer transition plays a role in the low angle of attack nonlinearities in these,

as well as the present, static force data. The data of Reference 191 for a NACA 0018 airfoil show

a similar Reynolds number dependence. The authors of Referencel9j point out that the accuracy

of their data for Reynolds numbers below about 800,000 are put in doubt due to measured
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assymetry in the lift curves for symmetric airfoils for positive and negative angles of attack. In

any case, the situation exemplifies the difficulty in comparing section force characteristics from

different test rigs and models, as well as iniscid theory. At this point we are satisfied to say that

the static slope data of Figures 7a and 7b are in general agreement, as will be shown, with the

independently measured steady state indicial response results.

VII. First Order Nonlinear Indicial Response Results

VII. 1 First Order Normal Force Responses Based on Static Force Nonlinearities

The normal force indicial response to a step change in a due to rotation has been given by

Equation 21. For low angle of attack the response has been evaluated using Wagner's function

with Equation 25 as the result. Wagner's function (Equation 23) uses a constant steady state

normal force curve slope of 2rr. At first, it might be tempting to modify Equation 25 to

introduce first order nonlinearities by replacing the 2rr with the local value of the static normal

force curve slope giving:

N[t-T, a (r)] = ICNa s(ar))] 4T(t-r) (32)

where: 4T(t-r) = [ 1 - (1 -a)A e-a(t-T) - (1 -b)B e-b(t-T)1

The term in brackets on the RHS of Equation 32 is the static normal force curve slope at a((r).

Notice that for large values of elapsed time the transient function h-r approaches unity, and the

indicial response approaches the local steady state slope--as it must regardless of the relationship

used to describe the response. Equation 32 is seen to be a special form of Equation 6 wherein the

dependence of the response on a(r) is introduced through the steady state normal force curve

slope, and the time dependence is contained within the function 4 . While this is nonlinear, it has

the disadvantage that the "functional form" of the response, given by 4I., does not itself depend

on a(T). As such, Equation 32 does not encompass first order dependence in the general sense

of Equation 6. Furthermore, the present experimental evidence suggests that for large variations

in the onset angle of attack, the first order indicial response cannot be adequately represented by a

single "type" of function as in Equation 32.
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VII.2 Filtering and Repeatability

The present force data have been filtered using notch filters set at the towing structure

natural frequencies. The frequencies were determined in empty-tank tests as discussed in Section

IV. Figure 8a illustrates the effect of filtering on the normal force data. Shown are normal

force data for a 1 step up at an onset angle of 20. The main effect of the filter is to remove the

large loading shortly after the step onset. The effect of filtering the force data on the computed

indicial response is shown in Figure 8b. In Figure 8a the abscissa refers to time measured from

the beginning of the test. In Figure 8b, as well as other indicial response results which follow',

the abscissa refers to elapsed time from the step onset. Beyond about one chord of travel from the

step onset, the filtered and unfiltered responses are virtually the same, insofar as the contribution

to the integral of Equation 19 is concerned. The filter also attenuates some of the high frequency

electrical noise.

As noted in Section V, the experimental uncertainty in the indicial response can become

large. Therefore, some scatter in the data due to uncertainty is expected. Figure 9a shows the

normal force indicial response results for an onset angle of 2* for five separate runs. Each run

has the same general form, however, they differ in magnitude. Figure 9b is the result of

averaging the five individual runs. Notice that the averaged result approaches with reasonable

accuracy the proper steady state value which has been measured independently as described in

Section VI. Figure 9c shows the results of five runs at an onset angle near 11 . These data are

repeatable and each run approaches the correct steady state value.

As the onset angle of attack is increased beyond the static stall angle of attack(15*) the

indicial response results become more erratic, more oscillatory, and less repeatable. This appears

to be due to flow separation and energetic vortex shedding. Figure 9d shows three indicial

response results for an onset angle of 20. Five runs were performed and the results were

ensemble averaged. Reference [101 notes that for time-variant (oscillatory) equilibrium states, the

indicial responses at a particular onset angle may differ in phase due to dissimilar conditions at

step onset. Similar observations have been made with regard to the onset angle dependence of

axial force indicial responses.

VII.3 First Order Normal Force Indicial Responses at Low Alpha

The average results for five runs at ao=2 are compared with the theoretical responses
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given by Equations 25 and 32 in Figure 9b. Equation 32 was evaluated using the present

experimental result for the static normal force curve slope shown in Figure 7a (CNass = 8.07/rad

at 2"). There is relatively good agreement between the experimental data and Equation 32 over

most of the test interval. As discussed earlier, the digital filtering process introduces a time lag in

the response of approximately one-half to one chord which is not accounted for in the data of

Figure 9b, and other indicial response results which follow. Notice that by shifting the

experimental response of Figure 10a to the left to compensate for the time lag, the agreement

between the experimental result and the Equation 32 improves. Equation 25, based on a steady

state slope of 2T, is seen to give results substantially below the experimental results.

The average normal force response at ao = 4.8" is shown in Figure 10a. The response

computed from Equation 32 is in reasonably good agreement with the experimental results.

Equation 32 has again been evaluated using the present results for the steady state slope given in

Figure 7a. Equation 25 is now slightly larger than the steady state experimental result.

Increasing a0 to 8.33* results in the normal force indicial response shown in Figure 10b. The

experimental response differs from Equation 32 at elapsed times below 3.0. Equation 25 gives a

large overestimate of the steady state normal force response.

Figure 10c shows the normal force indicial response at cxo= 11.32. Neither Equation 25

or 32 adequately represents the experimental response. Notice, however, that the experimental

result still approaches the correct steady state lift curve slope as elapsed time from step onset

increases. Furthermore, if Equation 32 rather than the actual response is used in Equation 19 to

calculate the normal force, the contribution to the convolution of the response at 110 will be too

small for elapsed times less than that for steady state.

Figure 10d is an overlay of the indicial responses for onset angles less than 15. These

responses are similar in that they each appear to approach a single-valued steady state. This is due

to the fact that the steady state flow is, more or less, attached. Notice also that the response

decreases substantially as the static stall angle is approached, even for small values of elapsed

time. Therefore, the present experimental evidence suggests that it mayi not be valid to assume a

response of the form of Equation 25 (i.e. constant steady state slope of 27r) even for relatively low

alpha motions.
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VII.4 First Order Normal Force Indicial Responses at High Alpha

The experimental results for onset angles in the range 150 < a o < 26" are shown in

Figure 1 la. Clearly, the responses for a o > 17 ' are fundamentally different than the classical

response of Equation 32. Flow visualization studies have shown that for onset angles beyond

ao = 150 leading edge separation due to static stall has occurred before the step onset. Notice in

Figure 7a that the steady state lift curve slope is nearly zero at a = 150 and becomes negative for

a > 15', which is another indication of static stall. Referring again to Figure 1 Ia, the indicial

response is seen to change substantially in form between ao = 15.47 and a o = 17.55'. This

may be indicative of a bifurcation in the aerodynamic response at the static stall angle. This may

be further justified by two observations. First, notice that for onset angles less than 150 the

indicial response approaches steady state, more-or-less, without oscillations(cf. Figure 10d). For

onset angles above 15" the responses have large oscillations which arise due to flow separation

and vortex shedding which have been observed in flow visualization movies also taken as part of

this study. The oscillations persist for large values of elapsed time(i.e. the steady state may be

oscillatory). Oscillations in the steady state response beyond some critical threshold is

characteristic of a Hopf bifurcationt 101. Secondly, the responses for a o = 17.550 and a o =

20.77* appear to have a different time-scale, in terms of the rate at which the responses change

with time, than those for a o = 15.47* and below. This suggests that the flow has fundamentally

changed and the response has undergone a bifurcation to a new flow regime dominated by vortical

structures. The time to approach steady state for these responses is clearly longer than the low

alpha responses described above. It appears that a longer run time than 10 chords beyond step

onset is needed to reach steady state. Significantly longer periods of travel beyond the step onset

are not possible in the O.U. tow tank if quasi-steady flow is to be achieved prior to the step. This

is particularly true at high alpha where the initial flow is separated. In terms of the convolution

integral in Equation 19, however, knowledge of the indicial response for 10 chords of travel is

sufficient to consider a number of trial motions of practical interest such as a rapid pull-up.

The responses at a o = 17.55* and a o = 20.77" display some interesting behavior. First,

for elapsed times below 2.0 chords the response magnitudes are small. For small elapsed times

these responses will have only small contributions to the convolution integral of Equation 19

which, as will be shown, leads to a significant deficit in the integrated normal force results. As

elapsed time increases the responses become extremely large in relation to their respective steady
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state values given in Figure 7a. These large responses will translate into large normal forces for

airfoils operating slightly beyond the static stall angle. This is significant from the standpoint of

using first order indicial responses to model dynamic stall where it is well known that large forces

may ensue. Preliminary results from flow visualizations suggest that the large forces may be due

to rapid flow reattachment shortly after the step onset. This flow reattachment may be similar to

the phenomenon of flow separation delay in unsteady airfoils, where the delay gives rise to large

suction pressures over the upper surface of the airfoil. Assuming these phenomenon are related

then this observation would provide some physical grounds for computing dynamic effects using

first order indicial responses. Notice, however, that the occurrence of separation delay in

dynamic situations will also enter into the nonlinear formulation through attached flow onset

conditions. There is then an important distinction between the rapid flow reattachment which has

been observed for first order responses at onset angles where the flow is initially separated and

separation delay in dynamic situations. Flow reattachment was observed in the range of 17" < a

< 30. At larger angles flow reattachment was not observed and leading edge separation persists

throughout the motion.

The responses for 30" < a o < 46 are shown in 1 lb and those for 50" < ao< 62" are

shown in Figure 1 Ic. There is undoubtedly work to be done in interpreting the physical

mechanisms involved in the experimental indicial responses. However, the data presented above

clearly show that the indicial response is (at least) first order dependent even for moderate angles

of attack. Furthermore, for motions with large changes in angle of attack there will be a wide

variation in "functional form" of the indicial responses. As has been discussed in connection with

Equation 32 in Section VII.l, this eliminates the possibility of simply scaling the classical

response according to nonlinearities in the static load slope only.

VIII. First Order Axial Force Responses

The axial loading on an airfoil is, in general, an order of magnitude smaller than the normal

force. In rapid unsteady motions, strain gauge measurement of axial loads is generally very

susceptible to structural noise due to the required small moment of inertia of the load cell in the

axial direction. Measuring axial force indicial responses is a difficult task. Our confidence in

the accuracy of the present experimental axial response results stems primarily from the following

observations: i) the indicial responses are near to zero at step onset (i.e. the loading for the
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motions needed to construct the indicial response cancel at the step onset), ii)in general, the

indicial responses approach the correct steady state slope measured in independent tests with the

same airfoil as given in Figure 7b, and iii)when integrated for certain trial motions, the results are

in reasonable agreement with independently measured trial motion force data. These same

observations also apply to the normal force results discussed above. The first order axial force

indicial responses are shown in Figures 12a-d. As in the case for the normal force results, the

responses for onset angles beyond the static stall angle (-15') display oscillatory behavior. Also,

the responses near 200 become large relative to their steady state values of Figure 7b.

IX Integration of First Order Responses for Ramp Motion

IX.l Ramp Up Motion

The integral in Equation 19 has been evaluated numerically for the ramp-up motion given

by K = ab/U = constant, using the experimental indicial responses. The airfoil begins a a = 0'

and ramps up to a > 300. As shown in Figure 13, the motion was approximated by steps of Aa

= +I*. The experimental indicial responses were measured in intervals of at most five degrees

alpha(see Table 2). The response at intermediate angles were computed by interpolation between

the test data. For example, the indicial response at, say, a o = 22" was computed by

interpolating between the measured responses at a o = 20* and ao = 25. The circulatory

component of the normal force at some time t and corresponding angle of attack a(t) = K*t is

given by:
N

CN(t) = X 4  x Na[Tei, ao(i) ] Aai (33)
i=l

where Tei = t - Ti + Tr and is measured in chords and Aai= 7r/180 radians. The quantity, T1 ,

is a correction for the time lag introduced by the filtering process and, in the present study, was

found to be nearly equal to 0.5 in chords as discussed in Section IV. Notice that the value of the

elapsed time, Tei , will depend on the pitching rate, and for constant pitch rate (and zero initial

angle) may also be expressed as Tei = (a(t)- ao(ri))/2K + r . The calculations are relatively

insensitive to the time lag for values in the range 0.5 < T < 1.0 chord. The axial force has been

computed in the same way.

The uncertainty in Equation 33 has been estimated on the basis of the uncertainties in
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( 4NaTei, %(Ti) and Aai and will be indicated on the subsequent figures by error bars. The

uncertainty analysis indicates that even for relatively accurate angle of attack and force

measurements nee'ed to construct the indicial response, the error in the force calculation of

Equation 33 can become large(-20%).

IX.2 Results for Ramp Up at K _ 0.01

The computed normal force for K = 0.01 is shown in Figure 14a along with actual ramp

motion data taken with the same airfoil used to measure the indicial responses. Forces computed

using the linear response based on Equation 25 are also shown. The agreement between the

analysis and the ramp data is generally within the experimental uncertainty. At an angle near 16

the integrated indicial response results flatten out while the actual ramp data continue to increase.

This appears to be a first order effect embedded within the responses at onset angles above 15"

(i.e. separated flow at step onset due to static stall). Returning to Figure 1 la, for elapsed times

less than about 2 chords the responses at onset angles of 17.550 and 20.77 are small compared to

the peak values which occur in the range of 4 to 6 chords. Furthermore, the magnitude of these

responses for elapsed time from step onset less than 2 chords are significantly less than those for

lower onset angles of attack shown in Figure 10d. This deficiency in the response leads to the

flattening of the integrated results near 16. It will be shown later in this report that including the

second order term, a (T), in Equation 6 will improve these results. In the actual ramp data, the

effects of dynamic stall are evident near 25* where the force data flattens out. The nonlinear

indicial respon~se model predicts the stall with reasonable accuracy. Not surprisingly, the linear

model of Equation 25 is in general agreement with the ramp data at low angle of attack, but does

not predict the dynamic stall. The corresponding results for the axial loading during the ramp

motion are shown in Figure 14b. There is fair agreement between the integrated first order

indicial responses and the actual ramp data. It is not the purpose of this study to investigate

aerodynamic stall. However, with regard to the legitimacy of the present indicial response

results, it is significant that the loading during this complex flow phenomenon is predicted with

some accuracy.

The static force curves for the present airfoil are also shown in Figures 14a and 14b. In

each case the dynamic ramp data is substantially larger than the static data--which is a well known

result. For the pitch rates considered here the dynamic loads are approximately twice as large as
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their static counterparts. The point to be made is that the first order responses reproduce the

dynamic augmentation in the loading and this can be traced directly to the large magnitude indicial

responses that occur in the range 160 < to < 30'. as shown in Figures 1 Ia for the normal force

and 12b for the axial force.

The normal force results for K = 0.0075 are shown in Figure 15. In the case of K =

0.0075, the test was started with the airfoil at an initial angle of 8* to provide enough track so that

dynamic stall would be reached. The pitching motion was initiated shortly after the motion began

so that the steady state had not yet been reached at the inception of the pitch. This explains the

discrepancy in the ramp data and the indicial response calculations at the lower angles of attack.

On the other hand, by the time the airfoil had reached the dynamic stall angle it had moved

approximately 9 chord lengths so that initial angle of attack effects should have diminished.

Furthermore, the first order response model predicts the initial loading quite well for K = 0.01 as

seen in Figure 14a. In Figure 15 the dynamic stall is again predicted relatively well.

IX.3 Results for Ramp Up at K > 0.015

Increasing the pitch rate to K = 0.015 results in the normal and axial force data of Figures

16a and 16b, respectively. With regard to the normal force, the initial loading !o predicted

reasonably well. At angles beyond 20" unsteady effects become increasingly important and flow

separation is significantly delayed in the ramp up motion. Flow separation for K = 0.015 occurs

near 23. The first order response model appears to introduces flow separation effects too early in

the motion and, as a result, underpredicts the normal force loading during dynamic stall.

The results for higher pitch rate are shown in Figures 17a and 17b for K = 0.02, and

Figures 18a and 18b for K = 0.05. In both Figures, the effect of static stall at onset, which is

naturally embedded within the first order indicial responses near a = 15, is apparent in the

normal force results. Furthermore, a comparison of Figures 14a and 16a shows that as the

pitching rate increases from K = 0.01 to 0.02, the first order indicial response model does not

accurately describe the normal force loading for higher angles of attack. This is not too surprising

when considering that at a pitch rate of K = 0.02 the flow does not separate until near a = 27,

prior to which the flow is more or less attached. This means that for the duration of the ramp

motion between the dynamic stall angle of attack and the static stall angle of attack, 16* < a < 27,

Equation 33 has been computed using indicial responses which do not contain the physically



46

0

0

o-

0. 00

CC.

zz

)1-



47

00

I 0 "

" 'S

, 0

m - -
0o I.z

•- ,©,

.5,' a-

0 0 0 0 00

zz



48

F
-00

I, II

- 00

- - - -

Cns

_0

oT 0

06

C\4 N 0
0

6 0 6 6 o



I
I 49

I
I

I 0I / I; 0 II

// 6
/1 -- 'S 0

I

"S 
-I-,0

'S * 00

'S S.- -
-~

'S S.. 
*

'S UI / S U)
5- ~ -

6 -
I.-I .- CNI 0z
-oI S Cu1~
00

0

I 6

I
I

-o

I g 0
c~J 6

I z

I
I



50

- 0 0-4

5-0
-0- o

I.-

oOz
<II-<

000
Nc

C;-



51

0

e
e

l

/" 6
- (0 0

V 6

" "

t.. 00

0

0 0 0

S. Cj;0 0 00

ZZ



52

0

(00

- II IfI

- - 0 II

Lo

00

0 </

-0

0 0-0 0 0~

IN - 00I



53

correct step onset conditions. Furthermore, as a consequence of the convolution process these

errors will propagate throughout the calculation for subsequent measuring times. Rate effects on

the indicial response become important for motions in which the angle of attack at which

separation actually occurs differs significantly from the static stall angle. This occurs at high pitch

rates. The normal force results for K = 0.05 given in Figure 18a also show the consequences of

neglecting rate effects on the flow separation. For K = 0.05, leading edge separation occurs near
33% Improvement can only be achieved by including higher order terms in the indicial response

representation of Equation 6. The agreement between the integrated first order axial forces and

the ramp data is also seen to deteriorate as the pitch rate increases from K = 0.01 to 0.05.

X. Second Order Response Study

X.1 Integrated Results for the Ramp Up Motion

Second order normal and axial force indicial responses have been measured using a ramp

up motion from a substall angle of attack to the step onset ai.gle of attack as has been discussed in

Section V. Pitching rates of K = 0.02. 0.05, and 0.1 were studied. The results have been

integrated for the ramp up motion by rewriting Equation 33 as:

N
CN(t) = ( 4bNa [ei, %to(i), a(Ti)] Aai (34)

i=l1

For comparison, the second order results are also shown in Figures 14a-b, 16a-b, 17a-b, and

18a-b. The second order responses for K < 0.02 at any particular onset angle were computed by

interpolating by pitch rate between the measured second order responses at K = 0.02 and the first

order responses (K = 0) at the same onset angle. Referring to Figure 14a, for the case of K =
0.01 the second order result is only a slight improvement over the first order model. For K =
0.05 in Figure 18a, however, at an angle of attack near 16° the second order result is clearly in

better agreement with the ramp data. This suggests that including the proper flow condition at

step onset is important at the pitch rate of K = 0.05 wherein separation is significantly delayed.

Figure 18b shows a corresponding improvement in the axial force prediction.

Finally, as a rather severe test of the present approach, a ramp up at very high pitch rate of

K = 0.1 has been considered. The results are shown in Figure 19a and 19b. The second order
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results are in general agreement with the ramp data at high angle of attack where first order

dependence is not sufficient to accurately describe the loading. It is interesting that for pitch rates

of K = 0.05 and 0.1 at low angles of attack the first and second order responses underpredict the

loading, and this effect becomes more pronounced as the pitch rate increases (compare, for

example, the results at each pitch rate at an angle near 8*). This may be due to neglecting the

apparent mass reaction as well as the last term on the RHS of Equation 19 the magnitude of which

is directly proportional to pitch rate.

X.2 Comparison of First and Second Order Normal Force Responses

A comparison of first and second order indicial responses provides some insight into the
"rate" effects. Shown in Figure 20a are first order and second order (K = 0.05) responses at an

onset angle near 11 . The two responses are very similar. The slight difference in the steady

state values is due to the fact that the onset angles are not identical. A comparison of other

responses for a o < 15" shows similar behavior. Notice also from Figure 18a that the integrated

first and second order responses are similar below 15'. This suggests that the rate effect, or

rather the difference between first and second order responses, is small for onset angles where the

flow is initially attached. Figure 20b shows first and second order responses for an onset angle

near 20. For small elapsed time from step onset the second order response increases while the

first order response remains small. The measured responses in the range of 16" < ao < 25 °

exhibit similar behavior. This is the reason for the improvement in the integrated normal force

results near the static stall angle when using second order responses. As noted above, for a pitch

rate of K = 0.05 the flow remains more or less attached up to near 33. It is interesting to note

that for elapsed time below 5 chords the general shape of the second order response is similar to

the first order responses for substall onset angles of attack; compare for instance with the first

order responses in Figure 10d.
Figure 21a shows the second order results for onset angles near 11° for the three pitch rates

considered. The pitch rate is seen to have little effect on the normal force response and this

behavior is exhibited for other second order responses for ao below 15. Again, differences in

the steady state value are believed to be largely due to dissimilar onset angles. At onset angles

beyond about 17, the indicial responses become chaotic due to flow separation, which occurs

after the step, and energetic vortex shedding. Figure 21 b shows second order normal force

responses at onset angles near to 20. For each pitch rate the flow is more or less attached
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at the step onset. Each response is very similar for approximately the first five chords beyond

which the responses decrease rapidly. It is difficult to draw conclusions from these data,

however, it appears that the attached flow at step onset gives rise initially to a response similar in

form to the substall first order responses, and the rapid drop in the response may be due to

subsequent flow separation since the onset angle is well beyond the static stall limit. Figure 21c

shows second order responses at a high angle of attack near 400 wherein at each pitch rate the

flow has undergone dynamic flow separation prior to the step onset. Future flow visualization

studies may provide additional information which may help to interpret these data. A complete

set of the experimentally measured second order normal and axial force indicial responses for a

ramp up to onset at K = 0.05 are given in Appendix B at the end of this report.

XI. Saw Tooth Motion

The loading on an airfoil undergoing a saw tooth motion has been computed by integrating

the experimental indicial responses. The saw tooth motion was selected because it contains both

positive and negative pitch motion, and could easily be imparted with the current drive train of the

O.U. tow tank to provide baseline load data. Figure 22 shows the angle of attack data for the two

motions considered. In each motion the pitch occurs at constant rate of K = ±0.05 and the

amplitude in case one is approximately 00 to 100 and in case two 10* to 20. The saw tooth

motion at high pitch rate is an interesting case from the perspective of motion history effects on the

flow. Because the pitch rate is constant, only the first and second order terms in Equation 6 will

be nonzero. As such, the indicial response at, say, point "A" on Figure 22 will be the same for

the saw tooth motion and a pure ramp up motion (or any other constant a motion) even though the

saw tooth and the pure ramp up will undoubtedly have different motion history effects. The

loading results using the first and second(K--0.05) order responses are shown in Figures 23a and

23b for case one. The integrated loads are in good agreement with the baseline data. As has

been discussed in relation to Figure 20a, the first and second order indicial responses for low

alpha are similar and, therefore, the integrated first and second order loads in Figure 23a are also

similar. For case two the integrated loads are shown in Figures 23c and 23d. The integrated

loads and the baseline data show clear differences. In Figure 23c the first order results are in

better agreement than the second order results. Recall that the second order responses were

measured for a ramp up motion (a > 0) to the onset angle while the saw tooth consists of both
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positive and negative pitching motions. The second order integrated normal force results b in to

differ from the baseline data as the ramp down motion begins midway through the first cycle.

This suggests that the sign of the second order term, a, in Equation 6 is important. Notice,

however, that including the proper sign of a may still not be sufficient since, as discussed above,

a second order model cannot distinguish between a saw tooth motion or any other constant a

1motion and, therefore, may not include sufficient information about the motion history effects on

the flow field. The high alpha motion of case two spans the static stall angle of approximately

15. As in the case of the ramp up motion considered above, the second order response model

gives integrated loads which are higher than the first order results.

I XII. Conclusions

I * Direct measui,:ments of nonlinear indicial responses in a tow tank facility, along with

associated flow visualization, is a promising technique for gaining a fundamental understanding

of nonlinear and unsteady flow mechanisms of practical interest. The present study has

provided a strong database of indicial response data. The low angle of attack normal force

responses have been shown to be in general agreement with the classical theory based on

Wagner's function. Numerically integrated indicial responses for certain trial motions have

been shown to be in general agreement with baseline data for the same motions. The trial

motions which were considered represent a significant challenge for CFD solution methods.

IFor large amplitude motions, a large amount of indicial response data may be required. The

functional form of the indicial response changes radically over a range of angle of attack of 00 <

Ix < 60. As such, it is difficult to make use of regression techniques and/or curve fitting to

simplify the evaluation of the convolution integral. The alternative is to numerically integrate the

Iindicial response data, the accuracy of which depends on the amount of data available.

* Integrated first order indicial responses appear to model dynamic stall effects(for ramp up

I motion) reasonably well for K < 0.01. For pitch rates higher than 0.01, the use of only first

order responses begins to give increasingly incorrect results. This is primarily due to static stall

i effects(separated flow at onset) which are naturally embedded within the first order responses.

Including second order effects which include flow separation delay has been shown to improve

the integrated loads.
* For onset angles below the static stall angle of attack the first order and second order(for a >
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0) responses measured here are similar. For onset angles above the static stall limit rate effects

become increasingly important and this appears to be related to the flow separation delay in

dynamic onset conditions.
* The contribution of the apparent mass reaction to the nonlinear indicial response needs to be

studied. Without knowledge of the nonlinear noncirculatory effects, full prediction of nonlinear

aerodynamic loading using the present method is not possible.

Acknowledgements

This work .vas sponsored by the Air Force Office of Scientific Research under Grant

AFOSR-89-0502. The authors are deeply grateful to Mr. Jerry E. Jenkins of Wright

Laboratories for his contributions to this study.

XIII. Bibliography

lTobak, M. and Schiff, L.B., "Aerodynamic Mathematical Modeling-Basic Concepts,"

AGARD Lecture Series No.114, Paper 1, March 1981.
2 Tobak, M. and Chapman, G.T.,"Nonlinear Problems in Flight Dynamics Involving

Aerodynamic Bifurcations," AGARD CP-386, Paper 25, May 1985.
3 Beddoes, T.S., "Practical Computation of Unsteady Lift," Verrica, Vol.8, No.I, pp.55-

71, 1984.
4 Leishman, J.G., "Validation of Approximate Indicial Aerodynamic Functions for Two-

Dimensional Subsonic Flow," AIAA J. of Aircraft, Vo.25, No.10, pp.914-9 2 2 , Oct.1988.
5 Bisplinghoff, R.L. and Ashley, H., Principles of Aeroelasticity, Dover Publications Inc.,

New York, 1962. p. 120 .
6Jenkins, J.E., "Simplification of Nonlinear Indicial Response Models: Assessment for the

2-D Airfoil Case," AIAA J.of Aircraft," Vol. 28, No. 2, pp.131-138, Feb. 1991.
7 Kaplan, W.K., Advanced Calculus, Addison-Wesley Publishing Co., 2nd ed., pp. 515-

521.
8 Currie, I.G., Fundamental Mechanics of Fluids, Published by McGraw-Hill, Inc., 1974.
9Jacobs, E.J. and Sherman, A., "Airfoil Section Characteristics as Affected by Variations of

the Reynolds Number," NACA Report No. 586, 1937.
10Tobak , Chapman, G.T., and Unal, A., " Modeling Aerodynamic Discontinuities andk\



65

Onset of Chaos in Flight Dynamical Systems," Annales des Telecommunications, tome 42, no.

5-6. pp. 300-314, 1987.



66

Appendix A. The Indicial Response Due to Rotation

Consider the two motions required to measure the indicial response due to a step change in alpha

by rotation about some pitch axis as shown in Figure 1. Notice that in Equation 1 the motion

functions are expressed in terms of T. Motion 1 can be represented by a function of the form:

(21(T) = ( 0 + [4-(T) - i/(T-To)1 f(r) + P(T-To) f(To) (A1)

where p is the unit step function, r is the step onset time and f(r) is the reference motion (a(.) in

Figure 1 expressed in terms of T) describing the airfoil motion up to the time where motion 1 is

constrained to be constant at f(To). Motion 2 is then given by:

a2(T) = a I (T) + P(T-To)A a (A2)

so that:
da 2 dal - 6(T-To)A(X

dr dr
(A3)

da da l (T-T'o)A a
dT dT ~(-~)A

Using Equation 1 (with zero plunge) to evaluate the required terms on the RHS of Equation 5

(which defines the indicial response) yields:

dt t - t -d(4
CN(0- N4)( Na dT + 4 N TcQ - 4 )Na'<1T" (FNX -dT

CN() NIt =J dT J idT -JdT jdr A4

which can be rearranged to give:

ft ft,. d2dl

,)d- 2 _ d o21:=0 I d 2 _- - ]dr (A 5)
CN2(t) - CN I~t W (Nal d T d dr
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Substituting Equations A3 into A5 and performing the integrationsl 71 yields:

CN2(t)- CNI(t) = Aa kt4NO I - NxI r-To (A6)

where the prime superscript indicates differentiation with respect to r. Substituting Equation A6

into Equation 5 and letting T,, = T yields:

4 No[a( );tj] = I Notkx(()t,] - 4N)t[ a(X);tTi (A7)

Reducing the indicial responses to first order and writing in terms of elapsed time in accordance

with Equation 6 results in:

(a[t'T,a()] = 4N [t-r. a(T)]- 4 N[t-T,a(T)l (A8)

which is identical to Equation 18 which defines (INO.
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Appendix B. Second Order Normal and Axial Force Indicial Responses
For A Ramp Up to Step Onset at K = 0.05
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